Boundary Maps and Fenchel-nielsen-maskit Coordinates
نویسندگان
چکیده
We consider a genus 2 surface, M , of constant negative curvature and we construct a 12-sided fundamental domain, where the sides are segments of the lifts of closed geodesics on M (which determines the Fenchel–Nielsen–Maskit coordinates). Then we study the linear fractional transformations of the side pairing of the fundamental domain. This construction gives rise to 24 distinct points on the boundary of the hyperbolic covering space. Their itineraries determine Markov partitions that we use to study the dependence of the Lyapunov exponent and length spectrum of the closed geodesics with the Fenchel–Nielsen coordinates.
منابع مشابه
Coordinates for Quasi-Fuchsian Punctured Torus Space
We consider complex Fenchel–Nielsen coordinates on the quasi-Fuchsian space of punctured tori. These coordinates arise from a generalisation of Kra’s plumbing construction and are related to earthquakes on Teichmüller space. They also allow us to interpolate between two coordinate systems on Teichmüller space, namely the classical Fuchsian space with Fenchel–Nielsen coordinates and the Maskit e...
متن کاملComplex Hyperbolic Fenchel-nielsen Coordinates
Let Σ be a closed, orientable surface of genus g. It is known that the SU(2, 1) representation variety of π1(Σ) has 2g− 3 components of (real) dimension 16g− 16 and two components of dimension 8g−6. Of special interest are the totally loxodromic, faithful (that is quasi-Fuchsian) representations. In this paper we give global real analytic coordinates on a subset of the representation variety th...
متن کاملLinear Slices of the Quasi-fuchsian Space of Punctured Tori
After fixing a marking (V,W ) of a quasi-Fuchsian punctured torus group G, the complex length λV and the complex twist τV,W parameters define a holomorphic embedding of the quasi-Fuchsian space QF of punctured tori into C2. It is called the complex Fenchel-Nielsen coordinates of QF . For c ∈ C, let Qγ,c be the affine subspace of C2 defined by the linear equation λV = c. Then we can consider the...
متن کاملThe Complex-symplectic Geometry of Sl(2,c)-characters over Surfaces
The SL(2,C)-character variety X of a closed surface M enjoys a natural complex-symplectic structure invariant under the mapping class group Γ of M . Using the ergodicity of Γ on the SU(2)-character variety, we deduce that every Γ-invariant meromorphic function on X is constant. The trace functions of closed curves on M determine regular functions which generate complex Hamiltonian flows. For si...
متن کاملTriangulated Riemann Surfaces with Boundary and the Weil-petersson Poisson Structure
Given a Riemann surface with boundary S, the lengths of a maximal system of disjoint simple geodesic arcs on S that start and end at ∂S perpendicularly are coordinates on the Teichmüller space T (S). We compute the Weil-Petersson Poisson structure on T (S) in this system of coordinates and we prove that it limits pointwise to the piecewise-linear Poisson structure defined by Kontsevich on the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 13 شماره
صفحات -
تاریخ انتشار 2003